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QUADRATIC OPTIMIZATION IN THE PROBLEMS OF ACTIVE CONTROL OF

SOUND*

J. LON(_ARI(_ t AND S. V. TSYNKOV_

Abstract. We analyze the problem of suppressing the unwanted coraponent of a time-harmonic acoustic

field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e.,

by introducing the additional acoustic sources called controls that g(_nerate the appropriate anti-sound.

Previously, we have obtained general solutions for active controls in both continuous and discrete formulations

of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source

strength of active control sources. These optimal solutions happen to be particular layers of monopoles on

the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent

to minimization in the sense of L1.

By contrast, in the current paper we formulate and study optimization problems that involve quadratic

functions of merit. Specifically, we minimize the L2 norm of the control sources, and we consider both

the unconstrained and constrained minimization. The unconstrained L2 minimization is certainly the eas-

iest problem to address numerically. On the other hand, the constrained approach allows one to analyze

sophisticated geometries. In a special case, we can compare our finite-difference optimal solutions to the

continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the

optima obtained in the sense of L2 differ drastically from those obtained in the sense of LI.

Key words, noise cancellation, active control sources, volumetric and surface controls, general solution,

monopoles and dipoles, radiation of waves, complex-valued quantitie% L2-minimization, overdetermined

systems, least squares, unconstrained minimization, constrained minimization

Subject classification. Applied and Numerical Mathematics

1. Introduction. In the simplest possible formulation, the problem of active control of sound is posed

as follows. Let _ C R" be a given domain (bounded or unbounded), and F be its boundary: F = 0_, where

the dimension of the space n is either 2 or 3. Both on 12 and on its complement 121 = If{n \_ we consider the

time-harmonic acoustic field u = u(x), x E Rn, governed by the non-homogeneous Helmholtz equation:

I,u - Au + k2u = .f. (1.1)
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Equation (1.1) is subject to the Sommerfeld radiation boundary conditions at infinity, which for n = 2 are

set as

and for n = 3 as

u(x) = 0 (txl-1), 01x-m+ = o (Ixl as ---* oo. (1.2b)

The Sommerfeld boundary conditions specify the direction of wave propagation, and distinguish between

the incoming and outgoing waves at infinity by prescribing the outgoing direction only; they guarantee the

unique solvability of the Helmholtz equation (1.1) for any compactly supported right-hand side f = f(x). It

is important to mention that as we are dealing hereafter with the traveling waves (radiation of sound toward

infinity), all the resulting solutions will necessarily be complex-valued, otherwise it is impossible to account

for the key phenomenon of variation of phase with the change of spatial location.

The source terms f = f(x) in equation (1.1) can be located on both 12 and its complement 121 = ll(n \12;

to emphasize the distinction, we denote

f=f++f-, suppf+Cf_, suppf- C121. (1.3)

Accordingly, the overall acoustic field u = u(x) can be represented as a sum of the two components:

u = u + + u-, (1.4)

where u+ is driven by the interior sources ]+, and u- is driven by the exterior sources ]- w.r.t. 1):

£u + =/+, (1.5a)

Zu- = J'-. (1.5b)

Note, both u + = u+(x) and u- = u-(x) are defined on the entire _'_, the superscripts "+" and "-" refer

to the sources that drive each of the field components rather than to the domains of these components. The

setup described above is schematically shown in Figure 1.1 for the case of a bounded domain f_.
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FIG. 1.1. Geometric setup.

Hereafter, we will call the component u + of (1.4), (1.5a) sound, or "friendly" part of the total acoustic

field; the component u- of (1.4), (1.5b) will accordingly be called noise, or "adverse" part of the total

acoustic field. In the formulation that we are presenting, 12 will be a predetermined region of space to be

protected from noise. This means that we would like to eliminate the noise component of u(x) inside 12, while

leaving the sound component there unaltered. In the mathematical framework that we have adopted, the

component u- of the total acoustic field, i.e., the response to the adverse sources f- [see (1.3), (1.4), (1.5)],

will have to be canceled out on _, whereas the component u +, i.e., the response to the friendly sources f+,

will have to be left unaffected on f_. A physically more involved but conceptually easy to understand example

that can be given to illustrate the foregoing idea, is that inside the passenger compartment of an aircraft

we would like to eliminate the noise coming from the propulsion system located outside the fuselage, while

not interfering with the ability of the passengers to listen to the inflight entertainment programs or simply

converse. Another good example is found in medicine, where high levels of periodic noise are produced by

resonance coils in magnetic resonance imaging (MRI) machines.

The concept of active noise control that we will be discussing implies that the component u- is to be

suppressed on _ by introducing additional sources of sound g = g(x) exterior with respect to 12, supp g C f_l,

so that the total acoustic field fi = fi(x) be now governed by the equation [cf. formulae (1.1), (1.3)]:

£fi = f+ + f- + g, (1.6)

and coincide with only the friendly component u + on the domain l_:

filzen = u+[_en" (1.7)

The new sources g = g(x) of (1.6), see Figure 1.1, will hereafter be referred to as the control sources or

simply controls. An obvious solution for these control sources is g = -]-. This solution, however, is clearly

sub-optimai because on one hand, it requires an explicit and detailed knowledge of the structure and location



of thesourcesf-, which is, in fact, superfluous, see [4]. On the other hand, its implementation in many

cases, like in the previously mentioned example with an airplane, may not be feasible. Fortunately, there

are other solutions of the foregoing noise control problem (see Section 2, as well as our previous work [4] for

detail), and some of them may be preferable from both the theoretical and practical standpoint.

To conclude the introduction, let us only mention that the area of active control of sound has a rich

history of development, both as a chapter of theoretical acoustics, and in the perspective of many different

applications. It is impossible to adequately overview this extensive area in the framework of a focused

research publication. As such, we simply refer the reader to the monographs [1, 2, 7] that, among other

things, contain a detailed survey of the literature. Potential applications for the active techniques of noise

control range from the aircraft industry to manufacturing industry to ground and air transportation to the

military to consumer products and other fields, including even such highly specialized and narrow areas as

acoustic measurements in the wind tunnels. It is generally known that active techniques are more efficient

for lower frequencies, and they are usually expected to complement passive strategies (sound insulation,

barriers, etc.) that are more efficient for higher frequencies, because the rate of sound dissipation due to

viscosity of the medium and heat transfer is proportional to the square of the frequency [3].

Let us also note that in the current paper we focus on the case of the standard constant-coefficient

Helmholtz equation (1.1), which governs the acoustic field throughout the entire space lt_n. This allows

us to make the forthcoming analysis most straightforward. However, one can as well consider other, more

complex, cases that involve variable coefficients, different types of far-field behavior, discontinuities in the

material properties, and maybe even nonlinearities in the governing equations over some regions. Approaches

to obtaining solutions for active controls in these cases are based on the theory of generalized Calderon's

potentials and boundary projections, and can be found in our previous paper [4] and in the monograph by

Ryaben'kii [12, Part VIII].

The material in the rest of the paper is organized as follows. In Section 2, we introduce and discuss general

solutions for controls in the continuous and discrete framework. Section 3 is devoted to the formulation and

solution of the quadratic optimization problems for the control sources (unconstrained and constrained L2

optimization). For reference purposes we also briefly mention our previous results on the optimization in

the sense of L1. Finally, Section 4 provides a summary and outlines a perspective for the future work.

2. General Solutions for Control Sources.

2.1. Continuous Formulation of the Problem. A general solution for the volumetric continuous

control sources g = g(x) is given by the following formula (f_1 = _n \f_):

g(x) = -Lwlxe_l, (2.1)

where w = w(x), x E 111, is a special auxiliary function-parameter that parameterizes the family of controls

(2.1). The function w(z) must satisfy the Sommerfetd boundary conditions (1.2a) or (1.2b) at infinity, and at

the interface F, the function w and its normal derivative have to coincide with the corresponding quantities

that pertain to the total acoustic field u given by formula (1.4):

wlr=ulr, r = r (2.2)



Other than that, the function w(x) used in (2.1) is arbitrary, and consequently formula (2.1) defines a large

family of control sources, which provides ample room for optimization. The justifcation for formula (2.1)

as the general solution for controls can be found in [4]. In our recent paper [5] we also emphasize that the

controls

= f g(y) (z - y)d = g •g(x)

given by (2.1) are actually volumetric control sources of the monopole type with regular density g E L_l°c)(_ n)

[assuming that w(x) was chosen sufficiently smooth to guarantee local absolute integrability of g(x)].

The control sources (2.1) possess several important properties. First of all, we see that to obtain these

controls one needs no knowledge of the actual exterior sources of noise f-. In other words, neither their
Ou

location, nor structure, nor strength are required. All one needs to know is u and 5-_ on the perimeter F

of the protected region 12. In a practical setting, Uir and ou ]r can be interpreted as measurable quantities

that are supplied to the control system as the input data. Let us emphasize that the quantities to be

measured refer to the overall acoustic field u rather than only to its unwanted component u-, see formula

(2.2). At the same time, the analysis of [4] shows that the application of the controls (2.1) will result in the

cancellation of only the adverse noise u- on the protected domain f_, whereas the friendly sound field u+

will be left unaffected. In other words, the controls (2.1) are insensitive to the interior sound u +, whatever

it might be, and are built so that to suppress only the exterior noise u- on if. This capability is extremely

important because in many applications the overall acoustic field always contains a component that needs to

be suppressed along with the part that needs to be left intact. Let us also note that a more general analysis

of [4] based on Calderon's potentials and boundary projections yields the same formula for controls (2.1),

(2.2) for the cases that may involve variations in material properties and alternative types of the far-field

behavior. Of course, the operator L will be a new variable-coefficient operator, and the function-parameter

w(x) will have to satisfy new far-field boundary conditions instead of the Sommerfeld boundary conditions.

Along with the volumetric controls (2.1), one can also consider surface controls, i.e., the control sources

that are concentrated only on the interface F. A general solution for the surface controls is given by

[ ] og(s.rf)_ ow - - (2.3)

where w = w(x), as before,denotes the auxiliaryfunction-parameter.In contradistinctionto the previous

case,now ithas to satisfythe homogeneous Helmholtz equation on the complementary domain: Lw --0 for

x E f_1,and the Sommerfeld boundary condition(1.2a)or (1.2b)at infinity,but at the interfacer itmay be

arbitrary,i.e.,itdoes not have to meet boundary conditions(2.2).The corresponding discontinuitiesthat

are denoted by expressionsin rectangularbrackets in formula (2.3)drive the surfacecontrolsources. The

firstterm on the right-hand sideof (2.3)representsthe densityof a single-layerpotential,which isa layer

of monopoles on the interfaceF, and the second term on the right-handsideof (2.3)representsthe density

of a double-layerpotential,which isa layerof dipoleson the interfaceF. A detailedjustificationof formula

(2.3)asgeneralsolutionforsurfacecontrolscan be found in [15],seealso [5].The fundamental propertiesof

the surfacecontrols(2.3)are the same as those ofthe volumetriccontrols(2.1)-- they are alsoinsensitive

to the interiorsound u+(x), and do not requireany knowledge of the actualsourcesof noisef-.

In the family ofsurfacecontrols(2.3)we identifytwo important particularcases.First,the cancellation

of u-(x), x E f_,can be achieved by using surfacemonopoles only,i.e.,by employing only a single-layer



potential as the annihilating signal (anti-sound). To do that, we need to find w(x), x E ftl, such that there

will be no discontinuity on F between u(x) and w(x), i.e., in the function itself, and the discontinuity may

only "reside" in the normal derivative [see formula (2.3)]. This w(x) will obviously be a solution of the

following external Dirichlet problem:

Lw = 0, x G _1,

wl== lr, (2.4)

subject to the appropriate Sommerfeld boundary condition (1.2a) or (1.2b). Problem (2.4) is always uniquely

solvable on gtl = I_'_ \_. Second, one can employ only the double-layer potential to cancel out u-(x), x C 12,

i.e., use only surface dipoles as the control sources. In this case, the function w(x), a: E ftl, has to be chosen

such that the discontinuity on F be only in the function itself, i.e., between the actual values of u(x) and

w(x), and not between the normal derivatives. This w(z) should then solve the following external Neumann

problem:

Lw = O, x E _1,

r = ou , (2.5)On r

again, subject to the appropriate Sommerfeld condition at infinity, (1.2a) or (1.2b); the latter guarantees

the solvability of (2.5). We therefore see that surface control sources (2.3) are given by combinations of the

monopole and dipole layers, with the two "extreme" cases corresponding to either only monopoles, see (2.4),

or only dipoles, see (2.5).

Altogether, we have now introduced active controls of two different types on the surface, but only one

type of the volumetric controls -- monopoles, see formulae (2.1), (2.2). This is not accidental. Let us note

that from the standpoint of physics and engineering, the monopole and dipole sources provide different types

of excitation to the surrounding sound-conducting medium. A point monopole source can be interpreted as

a vanishingly small pulsating sphere that radiates acoustic waves symmetrically in all directions, whereas a

dipole source resembles a small oscillating membrane that has a particular directivity of radiation. Moreover,

in the genuine time-dependent acoustic context one can show that monopole sources are those that alter the

balance of mass in the system, they are scalar in nature and reside on the right-hand side of the continuity

equation, whereas dipole sources alter the balance of force, they are vectors and reside on the right-hand

side of the momentum equation, see our recent work [5] for detail. This distinction basically warrants a

separate consideration of the monopole and dipole type sources as far as the point-wise or surface excitation

may be concerned. As, however, has been shown in [5], in the framework of time-harmonic volumetric

excitation (the case studied hereafter) a separate consideration of dipole fields appears superfluous. In fact,

any volumetric distribution of dipoles can, under the assumption of sufficient regularity, be recast in the form

of an equivalent volumetric distribution of monopoles. In so doing, the dipole sources enter the right-hand

side of the Helmholtz equation (1.1) through a divergence operator, whereas monopoles enter this right-

hand side directly (up to a multiplicative constant). 1 We refer the reader to our paper [5], as well as to

the monograph [7], for further detail. In Section 3, we will study the volumetric monopole controls in the

1In the corresponding analysis, we interpret the field variable u(x) as acoustic pressure, which is a common strategy in the
literature.



contextofL2 optimization; for comparison, we also provide there the results of the L1 optimization from [5]

that involve both the volumetric and surface monopole control sources.

Let us also note that in practice it may often be convenient to use the so-called artificial boundary

conditions (ABCs), see [14], as a part of the definition of the auxiliary function w(a_). Assume that there is

a larger domain that fully contains fl and require, in addition, that £w := 0 outside this larger domain. This

requirement is always met in the case of the surface controls (2.3); and in the case of the volumetric controls

it implies that the resulting control sources will be compactly supported between r and the outer boundary

of the aforementioned larger region, see formula (2.1). For many applications this is desirable. Moreover,

from the standpoint of computing this is clearly the only feasible way to obtain a finite discretization (see

Section 2.2). It is known that the homogeneous equation £w -- 0 outside a given region, along with the

Sommerfeld boundary conditions at infinity, can be equivalently replaced by special ABCs at the boundary

of this region. General approaches to building the ABCs for a variety of different formulations are discussed

in the review paper [14]. For the specific case of a homogeneous Hehnholtz equation outside a sphere of

radius R in 3D, the ABCs were obtained in [5] using the separation of variables in spherical coordinates and

mode selection that would guarantee that the boundary conditions at infinity are satisfied:

d -1/2 (2)

d_b_m p=n _[P Ht+l/2(kP)] p=n"dp = ¢_- 1/2/--/(2) {b._ Wire(P) (2.6)
r "*l+l12t_l"!

In formula (2.6), p is the spherical radius, Wlm are the Fourier coefficients of w(x) with respect to spherical

functionsymt, l = 0,1,2,...,m = 0,+1,... ,±l, and "t+I/2 are Hankel's functionsof the second kind;

equalities(2.6)have to be enforcedforallthe appropriateIand m. Similarly,forthe homogeneous Helmholtz

equation outsidea disk of radiusR in 2D, the ABCs obtained in [5]read:

ddJt _ wl(p) p=R' (2.7)dp p--R- _pH_2)(kP) ^

where p is the polar radius, and wt are the Fourier coefficients of w(x) with respect to the complex exponents

e -a°, l = 0, 4-1, 4-2,... ; again, equalities (2.7) have to be enforced for all I.

2.2. Discrete Formulation of the Problem. The continuous analysis tools employed for obtaining

the control sources of the previous Section 2.1 are obviously deficient from the standpoint of applications.

Indeed, any practical design of a noise control system can only be composed of a finite number of elements

(sensors for measuring the field and actuators for creating the appropriate excitation, i.e., anti-sound).

Therefore, it is natural to discretize the problem on the grid and obtain the control sources in the discrete

framework so that the locations of the sensors and actuators can be associated with the grid nodes. For

details regarding the discrete formulation of the problem we refer the reader to the monograph [12, Part

VIII], as well as to the papers [17,18]; a brief account can also be found in [5, 15], and below we summarize

the results. Note that our discrete analysis is not limited to any specific type of the grid. In particular,

no adaptation or grid fitting to either the shape of the protected region _) or that of the external artificial

boundary, is generally required. However, for the purpose of illustrating the concepts discussed hereafter, we

will use a two-dimensional example that involves a polar grid. The use of the polar grid greatly facilitates

setting the discrete ABCs at the circular outer boundary of radius R. Moreover, the same two-dimensional

polar example is analyzed later in Section 3 in the context of L2 optimization.



LetusdenotetheaforementionedpolargridN; it spansboth fl and_1- Of course, the grid does not

extend all the way to infinity, it is rather truncated by the external artificial boundary in the shape of a large

circle of radius R. This, in particular, implies that the discrete control sources that we obtain will always

be compactly supported (see the discussion in the end of Section 2.1). Assume that the grid has J cells in

the radial direction with the nodes pj = jAp, j = 0,... , J, so that P0 -- 0 and pj = R; and L cells in the

circumferential direction with the nodes 8, = sAS, s = 0,... , L, so that 80 = 0 and OL = 27r. For simplicity,

it is convenient to think that the grid sizes Ap = R/J and A8 = 2_/L are constant; in applications, however,

the grid in the radial direction may be stretched.

Let now u (h) be a representation of the acoustic field on the grid, and L (h) be a finite-difference ap-

proximation of the differential operator L of (1.1). To accurately define the approximation, we will need to

introduce another grid 1V_along with the previously defined N. On the grid M, we will consider the residuals

of the operator L (h), and subsequently the right-hand sides to the corresponding discrete inhomogeneous

equation. We will use the notations n and m for the individual nodes of the grids N and _ respectively,

and the notation Nm for the stencil of the discrete operator L (h) centered at a given node m E M, so that

m= E amo  ), (2S)
nENm

where anm are the coefficients associated with particular nodes of the stencil. Generally, there are no

limitations to the type of the discrete operator that one may use. We only require that the difference

operator L (h) of (2.8) approximate the differential operator £ of (1.1) with the accuracy sufficient for a

particular application. For the specific example that we are analyzing, we will consider a conventional

second-order central-difference approximation, so that the grids N and 1V_actually coincide: n = (s, j) and

m -- (s, j) (except that 1V_is smaller, it does not contain the outermost row p = pj -- R), and formula (2.8)

becomes:

/ (h) (h)
1 1 l Us,j-F1 -- Us,j

= pj AO oj- u(a! _ u (h) )
s, 3 s,j--1

.(h) _ 2u(h! u(h)
1 Us+l, j s,j --F s-l,j k2_(h)

A0 2 + s,j.

(2.9)

Next, we introduce the following subsets of the grids M and N, which wilt allow us to accurately dis-

tinguish between the interior and exterior domains, interior and exterior sources, and interior and exterior

solutions on the discrete level:

M + =Mnfl, M- =M_M + =Mnnl,

U Nm, N-= U N..,
mEl_ mEM-

(2.10)

-y=N+nN -, _+=N-n_, _-=W-n_.

We emphasize, that the grid M that pertains to the residuals of the finite-difference operator £(h) is parti-

tioned into M+ and M- directly, i.e., following the geometry of _ and fll. In contradistinction to that, the

grid N is not partitioned directly, we rather consider the collection of all nodes of N swept by the stencil

Nm when its center 2 belongs to f_, and call this sub-grid N+ , see (2.10). Obviously, some of the nodes of

2These definitions require that the grid be sufficiently large to ensure that the sets M + and M- are not empty; each must

include at least one layer of nodes along the interface, as in formula (3.11), see Section 3.2.



FIG. 2.1. Schematic geometry of the domains, the stencil, and the grid boundar?4"y : "7+ U_/- in polar coordinates: Hollow

bullets denote "7+, filled bullets denote _f-.

N+ obtained by this approach happen to be outside It, i.e., in fll, and these nodes are called "y-. The sets

N- and -y+ are defined similarly starting from M-. The key idea is that whereas the grids M + and M- do

not overlap, the grids N + and N- do overlap, and their overlap is denoted "y; obviously, "y = "y+ tO -y-. The

subset of grid nodes 7 is called the grid boundary, it is a fringe of nodes that is located near the continuous

boundary F and in some sense straddles it. The specific structure of '1, clearly depends on the construction of

the operator £(h) of (2.8) and the stencil Nm. For example, for the polar second-order Laplacian (2.9), the

grid boundary "y will be a two-layer fringe of grid nodes located near F, as shown schematically in Figure 2.1.

Further specifics on the construction of grid boundaries can be found in the monograph [12].

The discrete noise control problem is formulated similarly to the continuous one, see Section 1. Let f(mh)+,
_ (h)+

m E M + , and f_h)-, m E M-, be the interior and exterior discrete acoustic sources, respectively. Let Un ,

n E N, and u(_h)-, n E N, be the corresponding solutions, i.e., £(h)u(h)+ = f(h)+ and L{h)u (h)- : f(h)-.

Using the same terminology as before, we will call u (h)+ the discrete sound and u (h)- the discrete noise.

The overall discrete acoustic field u (h) is the sum of its sound and noise components, u (h) = u (h)+ + u (h)- on

N, and obviously satisfies the equation £(h)u(h) = f(h) = f(h)+ + f(h)--. The goal is to obtain the discrete

control sources 9 (h) = g(rnh) SO that the solution fi(h) of the equation £(h;,fi(h) = f(h)+ + f(h)- + g(h) be equal

to only the sound component u (h)+ on the sub-grid N+.

A general solution for the discrete control sources g(h) = g(rnh) that eliminate the unwanted noise u (h)-



onN+ isgivenbythefollowingformula[cf.formula(2.1)]:

g(mh) _-" -- L(h)w(h) rneM- ' (2.11)

where w (h) = w (h), n E N-, is a special auxiliary grid function-parameter that parameterizes the fanfily of

controls (2.11). The requirements that this function w (h) must satisfy are, again, rather "loose," and can

be considered natural discrete counterparts of the corresponding requirements of the continuous function-

parameter w(x). Namely, at the grid boundary 7 the function w (h) has to coincide with the overall acoustic

field u (h) to be controlled:

w_h)ln_. _ = U(h)[ne. _. (2.12)

Notice that since, e.g., for the second-order discretizations the grid boundary 7 contains two layers of nodes,

_,+ and _/-, see Figure 2.1, then specifying the corresponding nodal values on _/is in some sense equivalent

to specifying the function and its normal derivative on F in the continuous case, see (2.2). a We also note

that for practical designs, the boundary data • (h)t shall be interpreted as measurable quantities that
_n InE_

provide input for the control system. In other words, we can think of a microphone at every node of 7; these

microphones measure the characteristics of the actual acoustic field and generate the input signal • (h)l
,_n Inc3""

The other requirement of the function w (h), besides the interface boundary conditions (2.12), is that

they must satisfy the appropriate discrete ABCs at the external artificial boundary p = R, see Figure 2.1.

The role of the discrete ABCs is the same as that of the continuous ABCs -- to provide a replacement for

the Sommerfeld radiation boundary conditions. The discrete two-dimensional ABCs are obtained in [5] by

using the direct and inverse discrete Fourier transforms, I -- -L /2 + 1,... ,L /2, s = 0,... , L - 1:

1 L-1 L/2

= Z w.e-"sA°, w.= (2.13)
s-_O I=-L/2+I

and essentially approximating boundary conditions (2.7) for l = -L/2 + 1,... , L/2 with the second order

of accuracy:

_-PPH(_2')(kP) p=R 4 IA_
_)l,J -- ?]Jl,J-1 ]_l _31'J -I- _)l,J-1 _- 0, _l -- , (_ = sin 2 (2.14)

Ap 2 H(2)(kp) _ 2

Note, _a2 of (2.14) are eigenvalues of the circumferential component of the discrete Laplacian (2.9). Relations

(2.14) for all I = -L/2 + 1,... , L/2 can also be recast into the matrix form:

(( 1 )(1 )--1)w.,j ----F-idiag - _p -t- _t _p - j31 F vo.,j_l - T w.,j-1, (2.15)

where F and F -1 are matrices of the direct and inverse discrete Fourier transforms of (2.13), and w.,j and

w.,j-1 are L-dimensional vectors of components • (a) and • (h) respectively, s = 0, 1, , L - 1.
"_s,J u" s,J- 1 ' • ""

Other than the two aforementioned requirements, i.e., the interface conditions (2.12) and the ABCs

(2.15), the function w (h) is arbitrary and as such, parameterizes a substantial variety of discrete control

sources, see (2.11). The latter will provide the search space for optimization in Section 3.

3This statement can be given a rigorous formulation in terms of approximation, see [12] for detail.
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It is also important to understand in what sense this discrete cancel]ation of noise models the continuous

cancellation described in Section 2. This is basically the question of approximation of the continuous gener-

alized Calderon's potentials by their discrete counterparts. To that effect, the theory of difference potentials,

see [12], says that under certain natural conditions, the discrete anti-sound v (h) = v(_h), n E N + , i.e., the

solution to £(h)v(h) = g(h) with g(h) given by (2.11), approximates the continuous anti-sound v -- v(x),

x E 12, i.e., the solution to Lv = g with g given by (2.1). The aforementioned natural conditions include

first the consistency and stability of the finite-difference scheme for the Helmholtz equation. Consistency

and stability will guarantee convergence as the grid size vanishes. In addition, the discrete boundary data

0-_) [r of (2.2) in the followingu_)lne_ of (2.12) have to approximate the continuous boundary data (u, ou
sense. Once the continuous function u and its first-order normal derivative ou are known at the boundary

F, normal derivatives of higher orders can be obtained via the differential equation itself, and the near-

boundary values u_h) [,_ can then be calculated using Taylor's expansion; the order of accuracy of the latter

calculation with respect to the grid size h has to be at least as high as the order of accuracy of the interior

scheme. In this case, the quality of approximation, i.e., the rate of convergence of the discrete potential to

the continuous one with respect to h, will be the same as prescribed by the finite-difference scheme itself.

For the central-difference operator (2.9), this rate is O(h2). In other words, when designing an active control

system following the finite-difference approach, one can expect to have the actual noise cancellation in the

same approximate sense as the solution of the finite-difference equation approximates the corresponding

solution of the original differential equation. Note, in any particular practical setting we will need to require

sufficient wave resolution on the grid, i.e., the waves of length A = 21r/k. where k is the wavenumber in (1.1),

will have to be well resolved by the specific discretization.

Finally, similarly to the continuous case we can identify some particular types of the discrete control

sources. First, let us define another subset of the grid 1MI(more precisely, of MI- ):

= {m • M-INton = 0}.

Basically, l_._t is the interior subset of M-, such that when the center of the stencil sweeps this subset, the

stencil itself does not touch 7+, see Figure 2.1. In other words, l_._ t is a subset of M- such that

U N,,,= N- +.

Next, we introduce the auxiliary function w (h) = w (h), n • N-, for (2.11) as follows:

and

= u( (2.16a)

£(h)W(h) = 0 on Mi._t.
(2.16b)

As before, we also assume that w (h) satisfies the discrete ABCs (2.15). Definition (2.16a) means that on the

interior part of the grid boundary "7+ we simply set w (a) equal to the given u(h): _n_(h)ltne_+ = u(h) l_e_+"

Definition (2.16b) is actually a discrete exterior boundary-value problem of the Dirichlet type. Indeed,

11



everywhereonand"outside"theexteriorpartof thegridboundary_-, i.e.,onN-\_,+,thegridfunction
w (h) is obtained as a solution of the homogeneous equation £(h)w(h) : 0 (enforced at the nodes l_.-_t )

supplemented by the boundary data on 9'-: w(h)[,_e _- _ (h)l which is specified for the unknown¢*n [nE'_-'

function w (h) itself. Note, relation (2.16a) and the first relation (2.16b) together are obviously equivalent to

(2.12). Therefore, the function w (h) defined via (2.16a), (2.16b) falls into the general class of w(h)'s used for

obtaining the discrete control sources (2.11).

Problem (2.16b) can clearly be considered a finite-difference counterpart to the continuous Dirichlet

g(h,surf) obtained by formulaeproblem (2.4). Therefore, its is natural to call the control sources g(h) -- monopole

(2.11), (2.16a), (2.16b) the discrete surface monopoles. Indeed, because of the definition of w (h) given by

(2.16a) and (2.16b), these g(h,surf)monopoie may, generally speaking, differ from zero only on the grid set M-\l_._t ,

which is a single "curvilinear" layer of nodes of grid M that follows the geometry of F. Accordingly, the

output of these controls can be called the discrete single-layer potential. The discrete surface monopoles and

discrete single-layer potential were first introduced and analyzed in our recent paper [15]. As shown in [5],

the controls of this particular type play a key rote in the context of L1 optimization, see also Section 3.1.

Let us emphasize that unlike the continuous surface controls (2.3), which belong to a different class of

functions rather than the volumetric sources (2.1) (singular 5-type distributions vs. regular locally integrable

functions), the foregoing discrete surface monopoles belong to the same original class of discrete control

sources (2.11). Let us also note that besides the discrete surface monopoles and the corresponding single-

layer potential, one can also define the discrete surface dipoles and, accordingly, the double-layer potential,

see [15] for detail.

3. Optimization of the Control Sources. Once the general solution for controls is available, in

either continuous (2.1) or discrete (2.11) formulation, the next step is to decide what particular element of

this large family of functions will be optimal for a specific setting. There is a multitude of possible criteria for

optimality that one can use. In many practical problems the cancellation of noise is only approximate and as

such, the key criterion for optimization (or sometimes, the key constraint) is the quality of this cancellation,

i.e., the extent of noise reduction. In contradistinction to that, in this paper we are considering ideal, or

exact, cancellation, i.e., every particular control field from either the continuous (2.1) or discrete (2.11) family

completely eliminates the unwanted noise on the domain of interest. Consequently, the criteria for optimality

of the controls that we can employ will not include the level of the residual noise as a part of the corresponding

function of merit, and should rather depend only on the control sources themselves. At a later stage of the

work we plan to look into the issues of approximate, rather than identical, noise cancellation, for the reason

of further reducing the costs. In this case, optimal solutions that still guarantee the exact cancellation are

likely to provide good initial guesses for subsequent optimization in the approximate framework.

As indicated previously, in the current paper we focus primarily on the quadratic optimization criteria.

We have looked into the most natural criterion of this type, namely, the L2 norm of the control sources g(x)

of (2.1) or g_) of (2.11), see Section 3.2. Clearly, this cost function depends only on the controls themselves.

The advantage of minimizing the controls in the sense of L2:

Hg"2 -- _ upp g ]g(x),2dx "--> min (3.1)

is that the minimum can be easily computed, see Section 3.2. The search space for minimization (3.1) includes
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all the appropriate auxiliary functions w(x), on which g(x) depends. The disadvantage of using this criterion

is that the quantity ]]g]l: does not have a clear physical interpretation. Nonetheless, motivated primarily

by the ease of the numerical approach to minimization, we do provide in Section 3.2 a comprehensive set of

computed optimal solutions for active controls in the sense of the least squares (i.e., L2). We also compare

these discrete results with the "semi-analytic" L2-optimal solutions obtained for simple circular shapes using

the spectral methodology developed in our previous paper [4].

Note, an alternative to minimization in the sense of L2 (3.1) may be minimization in the sense of L1 :

/ ]g(x)[dx --_ min.Ilglll
supp g

We have thoroughly studied this problem in our recent paper [5]. In particular, we have shown that the

L1 minimization is equivalent to minimizing the overall absolute acou._tic source strength, see [6, 7], of the

control sources g(x). This clear physical interpretation constitutes an advantage of using the L1 norm of the

control sources as a cost function for optimization (besides that it also depends only on the control sources

g(x) themselves). On the other hand, the corresponding optimization problem has proven difficult to solve

numerically, see [5]. We briefly describe the L1 results of [5] in Section 3.1 for the purpose of comparison.

In the discrete framework, the L2 minimization problem for the control sources can be formulated as

follows:

1

and the L1 minimization problem can be formulated as follows:

Jig(a)[]1 - Z Vmtg_)]--+ rain,
mEM-

where Vm accounts for the cell area and again, the search space includes all the appropriate auxiliary grid

functions w (h), through which g(a) is defined, see formula (2.11).

Either of the two foregoing discrete minimization problems can also be rewritten using matrices. The

finite-difference operator £(a) can obviously be interpreted as a matrix with N columns and M rows, where

N is the number of nodes n =_ (s,j) of the grid N- such that pj _< R, i.e., j _< J, and M is the number of

nodes m - (s,j) of the grid M- such that p/ < R, i.e., j <_ J - 1. Let w be the vector of N components

w(_a) =_w(h), n E N- and j < J, arranged so that
S,3

w = [w_, too, w.,g-1, w.,j] T, (3.2)

where w_ contains w_ h) for which n E 7, w.,j and w.,j-1 correspond to the outermost and second to last

circles of the polar grid, respectively, as in formula (2.15), and w0 contains all the remaining components of

w "in-between" 7 and the outer boundary. In accordance with (3.2), the matrix Z (h) can be decomposed

into four sub-matrices:

L (h) = [A, B, C, D] (3.3)

that all have the same number of rows M, A has as many columns as there are nodes in 7 (we denote this

number ]7]), C and D each has L columns, and B has N - t7[ - 2L columns.
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Usingformulae(3.2)and(3.3)andintroducingagenericnotation1]-IIforeither11.II1or 11.115,we have:

]l V(AII3'7 "_ nll.,_o + Cw.,d-1 "_ Dw,J)ll _ min, (3.4)

where V is an M x M diagonal matrix with the entries given by the corresponding cell areas Vm. The

vector w in the optimization formulation (3.4) is, in fact, subject to a number of equality-type constraints

that come from the interface conditions (2.12) and ABCs (2.15). More precisely, the first sub-vector w_ in

(3.2) is known and fixed because of (2.12) and we can rewrite (2.12) as w_ = u_, where u_ is given. The last

sub-vector w.,j in (3.2) is a function of w.,j-1 according to (2.15). Therefore, we can conclude that only Wo

and w ,j_ 1 contain free variables that provide the search space for optimization, and as such rewrite (3.4) as

min II V(Bwo + (C + DT)w.,j_I + -4w_)ll - minllEz -fll, (3.5)
t_O,_.,J--t Z

where E = V[B, C + DT] is an M x (N - 171- L) given matrix, z = [w0, w.,j_l] T is an (N - I_1 - Z)-

dimensional vector of unknowns, and f = - PAw. r is an M-dimensional known vector of the right-hand side.

Minimization problem (3.5) is, in fact, a problem of finding a weak solution of an overdetermined complex

linear system Ez = f. Note, the quantities involved are complex because we are dealing with the traveling

waves in the framework of the Helmholtz equation (see Section 1).

3.1. Results of Optimization in the Sense of L1. To provide a "reference point" for comparison,

we outline here the findings of our recent work [5]. Because of the complex-valued quantities involved, the

computation of the weak solution of problem (3.5) in the sense of L1 reduces to solving a non-linear and non-

smooth problem of constrained optimization over a large set of cones. This problem presents a substantial

challenge even for the most sophisticated state-of-the-art approaches to numerical optimization, namely,

those based on interior point methods [8,16]. The difficulties are further exacerbated by the large dimension

of the grid, because on one hand, the number of conical constraints that one obtains when solving (3.5) in

the sense of L1 is the same as the number of nodes in the grid M, which can be quite large even in two space

dimensions, and on the other hand, the typical maximum number of constraints that the aforementioned

state-of-the art methods can handle is only on the order of hundreds.

In spite of the difficulties, we have been able to compute several two-dimensional solutions for simple

test cases. Our best results were obtained with the software package SeDuMi by J. F. Sturm. 4 This is a

numerical algorithm for optimization over cones [13], it employs the ideas of interior-point methods, and the

self-dual embedding technique of [19], see also [9]. The algorithm allows for complex-valued entries, which is

very important in our framework, and also for quasi-convex quadratic and positive semi-definite constraints.

All numerical experiments that we have conducted, see [5], indicate a very consistent behavior of the L1
(h, surf)

optimal solution for the control sources. It happens to be the discrete layer of surface monopoles gmonopole

described in the concluding part of Section 2. Recall, this solution is obtained by applying formula (2.11) to

the auxiliary function w (h) defined by (2.16a), (2.16b). Figure 3.1 reproduces the results of one particular

computation from [5]; the protected region _ for this case was a unit disk, and the grid dimension was chosen

32 × 7 (see Section 3.2.1 for the actual grid definition).

Motivated by the consistent observations of the L1 optimal solution being the same as surface monopoles
(h,surf)

gmonopole, we have also been able to prove in [5] that surface monopoles indeed provide a global minimum for

4h_tp://feweal.kub.nl/sturm/software/sedumi.html
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the control sources in the sense of L1 for both the discrete and continuous formulation of the problem. The

proof of [5], however, covers only the one-dimensional case. Even though we have not yet been able to prove

a similar result for the general multi-dimensional case, we still believe that it is true, because a combination

of the two-dimensional numerical evidence and a one-dimensional accurate proof cannot, in our opinion, be

a mere coincidence. Therefore, we formulated this result in [5] in the form of a conjecture that we reproduce

below. Let us remind, that according to (2.3) the continuous surface monopole controls are given by

(surf),, [OwOu]6(F)=.v(x)[ • 6(F),gm°n°p°le(X) =- O-n _ r _er
(3.6)

where w(x) is a solution to the exterior Dirichlet problem (2.4). Then, we have

CONJECTURE 3.1. Let a complex-valued function w = w(x) be defined on f_l = _n\ -0, and let it be

sui_iciently smooth so that the operator I, of (1.1) can be applied to w(x) on its entire domain in the classical

sense, and the result £w be locally absolutely integrable. Let, in addition_ w(x) satisfy the interface conditions

(2.2), where u = u(x) is a given field to be controlled, and the appropriate Sommerfeld radiation boundary

conditions at infinity, (1.2a) or (1.2b). Then, the greatest lower bound for the L1 norms of all the control

sources g(x) obtained with such auxiliary functions w(x) using formula (2.1), is given by the L1 norm on F

of the magnitude of surface monopoles (3.6):

inf f_ [g(x)[d= = fr Iv(x)lds" (3.7)
w(=) 1

Formula (3.7) can obviously be rewritten as

inf Ilg(x)tll._, = I[vlll,r. (3.8)
w(=)

As has been mentioned, the discrete prototype of formula (3.8) that reads as follows

_- g(h,surf) ApminIlgl">lll,,,,- mooo,,o,e1,-,-
w(h)
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wasconjecturedin [5]onthebasisofthetwo-dimensionalexperimentalobservations.Weemphasizethatin
(h,surf)

the discrete case the Ll-optimal solution gmonopole belongs to the same class of functions as all the discrete

volumetric controls g_) of (2.11), whereas in the continuous case the optimum on the class of volumetric

controls g(x) of (2.1) actually takes us out of this class to the singular layer (3.6) on the interface F.

3.2. Discrete Optimization in the Sense of L2. The L2 minimization problem for the volumetric

control sources is solved hereafter completely on the discrete level. In other words, for every particular setup

we are finding the minimum (3.5) or, equivalently, computing a weak solution of the overdetermined system

of linear equations Ez = f, in the sense of the least squares. The resulting optima do not reduce to any

clearly identifiable special cases, like the layer of surface monopotes that appeared in the previously analyzed

context of L1. They are not assigned any particular physical meaning either, we present them below in order

to demonstrate that the L2 optima are distinctly different from the L1 optima obtained in [5], and that they

can be easily computed numerically, including some cases that involve rather sophisticated geometry. In the

simple case when the protected region [_ is a disk, we also conduct a grid convergence study in order to

validate the results of the discrete L2 minimization against the analytic reference solutions computed with

high accuracy using the spectral methodology that was first proposed in [4].

PROPOSITION 3.1. The matrix E = V[B, C + DT], see formulae (3.3), (3.5), has f_ll column rank.

Proof. The justification of Proposition 3.1 will be based on a natural solvability assumption for the

system of finite-difference equations that we are using. First, let us introduce more detailed partitions of w

and £(_) instead of (3.2) and (3.3), respectively:

w = [w_+, w_-, w0, w.,s-1, w.,s] T,
(3.9)

£(a) = [A +, A-, B, C, D].

The matrices A + and A- of (3.9) together give A of (3.3); w_+ and A + correspond to the innermost

"half" of the grid boundary _/+, and w_- and A- correspond to the outermost "half" of the grid boundary

"y- (see formula (2.10) and Figure 2.1). Next, consider an auxiliary exterior Dirichlet problem for the

finite-difference equation L(h)u (h) = 0 [see formula (2.9)] with the boundary data specified at 7 +. As

before, the problem is supposed to be truncated at the external artificial boundary p = pj by means of

the ABC (2.15). This problem is a discrete counterpart of the continuous exterior Dirichlet problem for

the Helmholtz equation with the boundary data given at F and ABCs (2.7) specified at p = R. The

continuous problem is uniquely solvable because it is equivalent to the genuine infinite-domain exterior

Dirichlet problem with the Sommerfeld boundary conditions (1.2b) set at infinity. Even though we do not

prove it, it is certainly reasonable to assume that the corresponding discrete problem based on a standard

central-difference scheme (2.9) and ABC (2.15) is uniquely solvable as well. 5 The latter assumption implies

that the square M × M matrix [A-, B, C + DT], see formula (3.9), is non-singular. Consequently, the

matrix G = VIA-, B, C + DT] is also non-singular, because V is an M x M diagonal matrix with non-

zero diagonal entries Vrn. Finally, we notice that the matrix E = V[B, C + DT], see formulae (3.2) and

(3.3), is obtained by removing the first [7-[ columns of the previous matrix G. Therefore, the columns of

E are linearly independent. [3

5A proof of this fact would involve showing that relations (2.14) axe "sufficiently close" to guaranteeing the precise mode

selection in the discrete case so that to avoid the resonances. This task is beyond the scope of the current paper. A comprehensive

study of solvability and well-posedness of one-dimensional discrete boundary value problems can be found in [11].
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An obvious key implication of Proposition 3.1 is that the minimization problem (3.4), or equivalently

(3.5), can be solved in the sense of L2 (least squares) using a standard QR-based approach, i.e., without

employing the Moore-Penrose type arguments. We use the MATLAB function LSOLIN for solving the least

squares minimization problems hereafter. This function also allows one to do constrained minimization, the

capability that we employ in Section 3.2.2.

3.2.1. Comparison with the Analytic Solution. In our previous work [4] we have developed a

methodology of spectral type that allowed us to construct the coatinuous L2-optimal volumetric controls

for a particular geometry, namely, controls supported on annular domains. We employed the separation of

variables and expressed the exact optimum as an infinite Fourier series in the circumferential direction whose

coefficients were certain combinations of Bessel functions, see [4, formnla(5.21)]. This series obviously had

to be truncated at a certain maximum number of harmonics for the purpose of numerical evaluation. On

smooth solutions, this method obviously provides for a spectral convergence. For the current purpose of

validating the finite-difference algorithm we will use the spectral solution of [4] as a reference solution in the

grid convergence tests.

Let the protected region be a disk of radius r centered at the, origin: _ = {(p, O)[p < r}, and let the

controls be supported on the annulus f_l = {(p, 8)[r < p < R}. We introduce a simple conformal polar grid,

which is uniform in the circumferential direction and stretched in the radial direction so that the cell aspect

ratio is equal to one:

M = {(pj,08)[ pj = eJZ_a,j = 0,..., J- 1; 8s = sAS, s = 0,... ,L- 1; A8 = 2_r/L},
(3.10)

N = {(pj,88)[ pj = eJae,j = -1,0,... ,J; 88 = sAS, s = 0,... ,L- 1; A8 = 2r/L}.

We, of course, assume that the area covered by the grid N of (3.10) is larger than ill, i.e., p-1 < r < R < pj.

The Helmholtz operator can be easily approximated on the grid (3.10) with the second order of accuracy

using the same five-node stencil as shown in Figure 2.1. This approximation involves only minor changes

compared to the approximation (2.9) that works on uniform grids, and we refer the reader to our paper [10]

for detail. The discrete ABCs in the form (2.14) or (2.15) do not change, except that Ap needs to be replaced

by Apj = pj -- P.I-1. Let us also note that we do not consider the grid (3.10) inside the domain [_ because

we introduce it only for the purpose of obtaining the control sources on ill. If, however, we were to actually

compute the output of the controls inside the protected region, we would have had to extend the grid (3.10)

all the way into [_, which can obviously be done using a variety of strategies. As indicated by the previous

analysis [4, 12, 17, 18], as long as the discrete controls axe constructed according to formulae (2.11), (2.12),

their output on the grid inside fl will identically cancel out the unwazated acoustic component u (_)-, see

Section 2.2. In all the cases that we analyze hereafter, we have P-1 < r < p0, so that according to (2.10)

the grid subsets are defined as

MI+ = {(pj,Ss) tj=-l}, M- = {(pj,88)]O< j <J-1},

N + ={(pj,0s) lj=-l,0}, N- ={(pj,0_)[ - 1 <j< J}, (3.11)

"7 = {(pj,Os)]j = -1,0}, 7 + = {(pj,Os)[j = -1}, 3- = {(pj,Os)[j = 0},

where always s = 0,... ,L - 1. In so doing, the dimension of the matrix g (h), see (3.3), is M x N _-_

(L. J) x (L. (J+ 2)), the dimension of A, which corresponds to the variables on 7, is M x 2. L _--(L. J) x 2. L,
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thedimensionof B is M x (N - 4L) - (L • J) x (L • (J - 2)), and the dimension of either C or D is

M×L=(L.J) xL.

We test the convergence of the discrete scheme for the wavenumber k -- 1.0 and the excitation (i.e.,

the acoustic field u (h) that drives the control system) taken in the analytic form of a shifted fundamental

solution of the Helmholtz operator, as if it were generated by the point source f- = 6(x - xl), where

Xl = (p cos 8, p sin 8) = (5, 0). We reemphasize that our approach does not require the explicit knowledge of

the exterior sources of noise. We only need this function u (h) as a sample field to be used as given data in

formula (2.12).

We employ a sequence of seven grids: L x J = 32 x 3, 48 x 4, 64 x 5, 96 x 7, 128 x 9, 192 x 13, and 256 x 17,

so that for all the grids the value of p j-1 is the same: P J-1 = const _ 1.481; according to (3.10) we also have

P0 -- 1. For the first series of convergence tests we assume that the boundaries p = r and p = R of the region

f_l, on which the continuous controls are to be supported, are located exactly at the conformal midpoint of

the first and last cell of the radial grid N of (3.!0), respectively, i.e., r = e -1/_e and R = e (J-1/2)_8. The

results of these tests are summarized in Table 3.1, which shows the L2 norm of the relative error between

the optimal continuous and discrete controls: arg[ min ]]gspect(X)H2] and arg[ min ][g(h)H(2h) ] .
w(z) w(h)

TABLE 3.1

Grid convergence Ior: k : 1, f- = 6(z - ¢1), ¢1 ---- (5,0), r ---- e -1/2A8, R ---- e (J-1/2)AS.

Grid 32 x 3 48 x 4 64 x 5 96 x 7 128 x 9 192 x 13 256 x 17

llErrorll2 0.013722 0.0061417 0.0034693 0.0015491 0.00087349 0.00038921 0.00021922

The data in Table 3.1 clearly indicate the second order of grid convergence for the discrete optimal

controls g(h). It is important to emphasize, though, that the geometry of fll was chosen grid dependent

(boundaries p = r and p = R were located at cell midpoints), which essentially means that for each subsequent

grid in Table 3.1 the optimum was computed on a somewhat different (smaller) domain. It is quite obvious

that in general the optimal solution will depend on the region on which the optimization is performed, and

we cannot expect the optimum computed on a subdomain to coincide with the corresponding fragment of

the optimum computed on the entire domain. However, the decrease of the error with the refinement of the

grid observed in Table 3.1 shall still be interpreted as convergence. Indeed, had we continued refining the

grid further, all the domains 121 = {r _< p _< R} themselves would converge to one and the same annular

region with the inner radius r = P0 = 1 (gt is a unit disk) and outer radius R = PJ-l, which was chosen grid

independent.

On the other hand, the quadratic rate of convergence suggested by Table 3.1 appears a rather fragile

phenomenon determined by the particular choice of the geometry. For other choices, the convergence may

be slower. In Table 3.2, we present the results that correspond to the same inner boundary r = e -1/2A0,

and the outer boundary located at either one quarter point or three quarters point of the outermost cell:

R = e (J-3/4)A8 or R ---- e (J-1/4)AS. One can easily see that the convergence in Table 3.2 is only linear.

At the moment, we do not have a detailed explanation of the grid convergence properties for g(A) that

we have observed, see Tables 3.1 and 3.2. It is important to realize, however, that what we evaluate is, in

fact, convergence of the residual rather than that of the solution. Indeed, the solution of the optimization

problem (3.4) or (3.5) per se is a particular grid function w (h) that delivers minimum to the selected function
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TABLE 3.2

Relative L2 error for: k = 1, f- ---- _(x - xl), zl --- (5,0), r -- e -1/2Ao, R :: e (J-a/4)Aa and R = e (J-1/4)AO.

Grid 32x3 48x4 64x5 96x7 128×9 192×13 256x17

J- 3/4 0.10283 0.074135 0.058274 0.040958 0.031618 0.021733 0.016562

J- 1/4 0.096894 0.071804 0.057069 0.040476 0.031362 0.021627 0.016504

of merit, namely, the L2 norm of the residual of the discrete Helmholtz operator applied to this w (h). What

motivates our primary interest toward the residual is obviously the fact that it has a physical meaning of the

distributed active control sources g(h), see formula (2.11). However, from the numerical analysis standpoint

it is known that grid convergence of the residuals is, generally speaking, not guaranteed even if the solution

itself does converge. Moreover, even though the optimization formulation that we have introduced in the

beginning of Section 3 is fairly conventional, in the PDEs' perspective neither the continuous generating

function w(x) nor its discrete counterpart w (h) at the optimum can be interpreted as a solution to any

traxiitional boundary-value problem, for which the existence and regularity results are available. As such, no

standard theoretical approaches to analyzing grid convergence will directly apply here, and we shall rather

regard the foregoing results as experimental findings.

Let us point out that in the context of noise cancellation on the doraaln f_, the issue of grid convergence

of the discrete control sources g(h) may, in some sense, be considered as the one of secondary importance.

Indeed, the output of the controls g(h) always eliminates the unwanted noise on l) [more precisely, on the

grid N+ , see formula (2.10)] no matter what particular solution from the general class (2.11), (2.12) is used.

Moreover, this output on N + can be interpreted as a discrete generalized potential of Calderon's type, which

will always converge to its continuous counterpart with the rate prescribed by the approximation order of

the scheme, again, irrespective of what particular w (h) , n E N-, and g(mh), m E M-, are taken to generate

the potential on every given grid, see the discussion on page 11 of this paper and references [4, 12] for

detail. As such, one need not be overly concerned with the rate of convergence for the discrete optimal

control sources as any of those will do the cancellation job equally well in any event. The question of grid

convergence for g(h), however, may be of a considerable independent interest, from both the theoretical and

experimental standpoint. It may certainly be worth looking into in the future, even though we expect that

neither theoretical nor systematic experimental analysis will be straightforward, especially in the case of

general geometries. The focus of the current paper, however, is not so much on the study of grid convergence

for g(h), but rather on building and testing the discrete quadratic optimization algorithm and applying it to a

number of cases, including those for which little is known regarding the analytic solution (see Section 3.2.2).

What we also want to emphasize in the current paper is that the L2 optimal solutions for active controls

differ very substantially from the L1 optimal solutions obtained previously in [5]. This is, of course, natural

to expect, but it is also interesting to visualize and actually observe the corresponding differences. As such,

we proceed with conducting the least squares minimization for the same setup that was earlier analyzed in

the sense of L1 in our paper [5] (the L1 results are reproduced in Figure 3.1). The grid dimensions were

L = 32 and J = 7; and the wavenumber k in the Helmholtz equation (1.1) was chosen k = 0.5. The

excitation was again produced by the point source f- = (f(x - xl), where xl = (5,0). In Figure 3.2(a)

we show the magnitude of the L2-optimal active controls on the 32 × 7 grid. This solution indeed differs
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drasticallyfromtheLl-optimal controls that are shown in Figure 3.1. Unlike the L1 optimum, i.e., the layer

of surface monopoles, the L_ optimal solution tends to be distributed over the entire annular region on which

the control sources are supported, obviously favoring the direction toward the noise source. We have also

obtained the L2 optimal controls for the same case but on a twice as fine grid of dimension 64 x 13; they are

shown in Figure 3.2(b). The plots in Figures 3.2(a) and 3.2(b) look very much alike, as expected.
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FIG. 3.2. Magnitude of the L2-optimai control sources for n = {z E R211=[ < 1}, k = 0.5, f- = 6(s - $1), zl = (5,0).

It is also interesting to observe how the qualitative behavior of the optimal solution changes when the

parameters that define the problem change. A key parameter is the wavenumber k. Previously, we have

analyzed the cases of relatively long waves compared to the size (i.e., diameter) of the protected region f_.

Let us now take k = _r, then there will be exactly one full wavelength across the diameter. We compute this

case on the grid 128 x 9 so that 1 = Po <_ p <_ P J-1 _ 1.481. In Figure 3.3, we present the distribution of

optimal controls g(h) for the case of the long waves, k = 0.5 [Figure 3.3(a)], and for the case of the wavelength

comparable to the domain size, k = 7r [Figure 3.3(b)]. One can clearly see that the solution that corresponds

to shorter waves is more oscillatory.

3.2.2. Constrained Optimization in the Sense of L2. The purpose of formulating and solving the

L2 optimization problems that involve constraints was to simulate not simply a more sophisticated geometry

but also a more realistic one. For example, if we interpret the previously considered protected region -- a

unit disk -- as a section of the aircraft fuselage, then we can also introduce portholes, i.e., windows, that

shall be interpreted as designated areas, in which no control sources can be applied. Optimization problem

(3.5) in this case needs to be modified. Instead of simply finding a weak solution of Ez = / in the sense

of the least squares, we will now have to impose additional constraints, i.e., require that for those nodes of

the grid M- that happen to be inside the aforementioned designated areas, the corresponding equations be
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enforced exactly. This leads to the problem

min IIEz - ._112 subject to Ecz = 1,:, (3.12)

where Ec is the sub-matrix of E (i.e., the appropriate set of rows), and fc is the respective sub-vector of jr,

that correspond to the constrained nodes.

For simulations, we have introduced two symmetrically located portholes in the fuselage: 5 ° </9 < 30 °

and 150 ° < /9 < 175 °. The resulting problem (3.12) was solved by a standard methodology for the least

squares minimization with equality constraints. It requires that the constraints be linearly independent and

basically results in reducing the dimension of the remaining search space accordingly. In our computations,

we have used the procedure LSQLIN available in MATLAB.

The case that we have actually analyzed in the context of the cor_strained L2 optimization, was again

one of those that we have studied previously in the L1 framework, see [5], but obviously with no constraints.

For this case, the excitation is provided by a pair of external sources: f- = (f(x - Xl) + 5(x - _), where

xl = (5,0) and x,2 = (1,2), the wavenumber k = 0.9, and the original grid has the dimension 48 × 9. In

Figure 3.4(a), we show the constrained L2 optimal solution for this original grid, and in Figure 3.4(b) we

show the solution for the twice as fine grid 96 × 17. We emphasize the presence of the large spikes in the

control effort next to the boundaries of the window on the right, which is natural to expect. We should also

point out at some apparent discrepancies between the control field on Figure 3.4(a) and that on Figure 3.4(b)

in the region near this window. Qualitatively, these discrepancies are e_sily explained once we realize that a

given window, which is defined as a particular range of/9, does not have to be exactly the same on different

grids because of the finite size A/9, and a finer grid simply provides for a "sharper" definition of the window in

the discrete sense. On the other hand, quantitatively we, of course, cannot claim that the same convergence

results as we have obtained previously in the case with no constraints, see Section 3.2.1, will hold in the

presence of the constraints as well. Moreover, in the constrained case one should generally expect less
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regularity from the corresponding continuous solution than in the previously addressed unconstrained cases.

Therefore, the results of the L2 constrained minimization outlined in this Section should only be regarded

as implementation examples of a previously tested numerical algorithm for more elaborate settings.

TABLE 3.3

Comparison of the computed L2-optimal solutions with surface monopoles.

Grid min Ig(h) (h) Constrained minjlg(h)ll(2 a) g(h,surf)monopole 2(h)

w(h) L w(h)

48 x 9 0.41855 0.54013 1.2983

96 x 17 0.43485 0.56175 1.8315

It is also interesting to compare the actuai norms of the solutions that we have obtained. They are

presented in Table 3.3, which also contains the L2 norms of surface monopoles that are optimal in the sense

of L1, see [5]. From Table 3.3 we see that the L2 norm at the minimum is considerably larger for the

constrained case compared to the unconstrained case. As concerns the L2 norm of the Ll-optimum, it is

three times larger in this case than the unconstrained L2 minimum. We should also mention that the finer the
Ac h(h,surf)

grid, the larger the L2 norm u_ Ymo,opole is, see Table 3.3. This is, in fact, a natural consequence of the scaling
(h,surf)

that we have adopted in [5]. Indeed, as indicated in [5], the actual magnitude oI gmonopole increases when

the grid is refined, because the corresponding continuous limit is a single layer on the interface. The latter is

a singular distribution, which is obviously not integrable by itself, and even less so with square. At the same

_(h,surf)time, it turns out that the discrete two-dimensional L1 norm of surface monopoles monopole ],M- does not

change with the change of the grid size. This essentially implies that the magnitude of g(h,surf)monopole SCa_es as

g(h,surf) is supposed to scale as O(h-]/2). This is corroboratedO(h -1) and as such, the L2 norm monopo]e 2,M-

by the data in the last column of Table 3.3.
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4. Discussion. We have developed and implemented a computational algorithm for optimizing the

sources of active control of sound in the sense of L_. For simple cases, we have been able to validate our

numerical results against the analytic solution. We have also seen that the L2 optimal controls are distinctly

different from the L1 optimal controls obtained previously. For the case of a somewhat more realistic

geometry, the corresponding optimization formulation involves constraints of equality type. Our algorithm

allows us to analyze the constrained L2 optimization problems as well.

In general, we should mention that there is a multitude of different acceptable optimization criteria for

active control of sound. For example, the advantage of L1 is its clear physical interpretation as minimization

of the overall absolute acoustic source strength. L2 does not have such a transparent physical meaning,

but is easier to compute numerically. In the forthcoming paper 6, we will report the results of the power

optimization. It turns out that the corresponding analysis necessarily involves interaction between the

sources of sound and the surrounding acoustic field, which is not the case for either L1 or L2. Even though

it may first seem counterintuitive, one can build a control system that would require no power input for

operation and would even produce a net power gain while providing the exact noise cancellation. Of course,

other functions of merit, besides the aforementioned three, can be employed as well. Some may come from

the engineering limitations, others will be just a matter of personal preference. Questions related to the

optimization of active controls of sound using different criteria will be studied in the future.
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